Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
2 |
|
btwntriv2 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B Btwn <. A , B >. ) |
3 |
|
cgrrflx |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. A , B >. ) |
4 |
|
breq1 |
|- ( y = B -> ( y Btwn <. A , B >. <-> B Btwn <. A , B >. ) ) |
5 |
|
opeq2 |
|- ( y = B -> <. A , y >. = <. A , B >. ) |
6 |
5
|
breq2d |
|- ( y = B -> ( <. A , B >. Cgr <. A , y >. <-> <. A , B >. Cgr <. A , B >. ) ) |
7 |
4 6
|
anbi12d |
|- ( y = B -> ( ( y Btwn <. A , B >. /\ <. A , B >. Cgr <. A , y >. ) <-> ( B Btwn <. A , B >. /\ <. A , B >. Cgr <. A , B >. ) ) ) |
8 |
7
|
rspcev |
|- ( ( B e. ( EE ` N ) /\ ( B Btwn <. A , B >. /\ <. A , B >. Cgr <. A , B >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. A , B >. /\ <. A , B >. Cgr <. A , y >. ) ) |
9 |
1 2 3 8
|
syl12anc |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> E. y e. ( EE ` N ) ( y Btwn <. A , B >. /\ <. A , B >. Cgr <. A , y >. ) ) |
10 |
|
simp1 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> N e. NN ) |
11 |
|
simp2 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
12 |
|
brsegle |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. A , B >. Seg<_ <. A , B >. <-> E. y e. ( EE ` N ) ( y Btwn <. A , B >. /\ <. A , B >. Cgr <. A , y >. ) ) ) |
13 |
10 11 1 11 1 12
|
syl122anc |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( <. A , B >. Seg<_ <. A , B >. <-> E. y e. ( EE ` N ) ( y Btwn <. A , B >. /\ <. A , B >. Cgr <. A , y >. ) ) ) |
14 |
9 13
|
mpbird |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Seg<_ <. A , B >. ) |