| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 2 |  | btwntriv2 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B Btwn <. A , B >. ) | 
						
							| 3 |  | cgrrflx |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. A , B >. ) | 
						
							| 4 |  | breq1 |  |-  ( y = B -> ( y Btwn <. A , B >. <-> B Btwn <. A , B >. ) ) | 
						
							| 5 |  | opeq2 |  |-  ( y = B -> <. A , y >. = <. A , B >. ) | 
						
							| 6 | 5 | breq2d |  |-  ( y = B -> ( <. A , B >. Cgr <. A , y >. <-> <. A , B >. Cgr <. A , B >. ) ) | 
						
							| 7 | 4 6 | anbi12d |  |-  ( y = B -> ( ( y Btwn <. A , B >. /\ <. A , B >. Cgr <. A , y >. ) <-> ( B Btwn <. A , B >. /\ <. A , B >. Cgr <. A , B >. ) ) ) | 
						
							| 8 | 7 | rspcev |  |-  ( ( B e. ( EE ` N ) /\ ( B Btwn <. A , B >. /\ <. A , B >. Cgr <. A , B >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. A , B >. /\ <. A , B >. Cgr <. A , y >. ) ) | 
						
							| 9 | 1 2 3 8 | syl12anc |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> E. y e. ( EE ` N ) ( y Btwn <. A , B >. /\ <. A , B >. Cgr <. A , y >. ) ) | 
						
							| 10 |  | simp1 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 11 |  | simp2 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 12 |  | brsegle |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. A , B >. Seg<_ <. A , B >. <-> E. y e. ( EE ` N ) ( y Btwn <. A , B >. /\ <. A , B >. Cgr <. A , y >. ) ) ) | 
						
							| 13 | 10 11 1 11 1 12 | syl122anc |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( <. A , B >. Seg<_ <. A , B >. <-> E. y e. ( EE ` N ) ( y Btwn <. A , B >. /\ <. A , B >. Cgr <. A , y >. ) ) ) | 
						
							| 14 | 9 13 | mpbird |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Seg<_ <. A , B >. ) |