Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
2 |
|
btwntriv2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) |
3 |
|
cgrrflx |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) |
4 |
|
breq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ↔ 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) |
5 |
|
opeq2 |
⊢ ( 𝑦 = 𝐵 → ⟨ 𝐴 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ) |
6 |
5
|
breq2d |
⊢ ( 𝑦 = 𝐵 → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ↔ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) |
7 |
4 6
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ) ↔ ( 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) ) |
8 |
7
|
rspcev |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) → ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ) ) |
9 |
1 2 3 8
|
syl12anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ) ) |
10 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
11 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
12 |
|
brsegle |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Seg≤ ⟨ 𝐴 , 𝐵 ⟩ ↔ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ) ) ) |
13 |
10 11 1 11 1 12
|
syl122anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Seg≤ ⟨ 𝐴 , 𝐵 ⟩ ↔ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ) ) ) |
14 |
9 13
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐵 ⟩ Seg≤ ⟨ 𝐴 , 𝐵 ⟩ ) |