Metamath Proof Explorer


Theorem seglerflx

Description: Segment comparison is reflexive. Theorem 5.7 of Schwabhauser p. 42. (Contributed by Scott Fenton, 11-Oct-2013)

Ref Expression
Assertion seglerflx ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐵 ⟩ Seg𝐴 , 𝐵 ⟩ )

Proof

Step Hyp Ref Expression
1 simp3 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
2 btwntriv2 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ )
3 cgrrflx ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ )
4 breq1 ( 𝑦 = 𝐵 → ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ↔ 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) )
5 opeq2 ( 𝑦 = 𝐵 → ⟨ 𝐴 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
6 5 breq2d ( 𝑦 = 𝐵 → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ↔ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
7 4 6 anbi12d ( 𝑦 = 𝐵 → ( ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ) ↔ ( 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) )
8 7 rspcev ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( 𝐵 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) ) → ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ) )
9 1 2 3 8 syl12anc ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ) )
10 simp1 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ )
11 simp2 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
12 brsegle ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Seg𝐴 , 𝐵 ⟩ ↔ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ) ) )
13 10 11 1 11 1 12 syl122anc ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Seg𝐴 , 𝐵 ⟩ ↔ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐴 , 𝑦 ⟩ ) ) )
14 9 13 mpbird ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐵 ⟩ Seg𝐴 , 𝐵 ⟩ )