Metamath Proof Explorer


Theorem seglecgr12

Description: Substitution law for segment comparison under congruence. Biconditional version. (Contributed by Scott Fenton, 15-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion seglecgr12 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCgrEFCDCgrGHABSegCDEFSegGH

Proof

Step Hyp Ref Expression
1 df-3an ABCgrEFCDCgrGHABSegCDABCgrEFCDCgrGHABSegCD
2 seglecgr12im NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCgrEFCDCgrGHABSegCDEFSegGH
3 1 2 biimtrrid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCgrEFCDCgrGHABSegCDEFSegGH
4 3 expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCgrEFCDCgrGHABSegCDEFSegGH
5 simp11 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NN
6 simp12 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NA𝔼N
7 simp13 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NB𝔼N
8 simp23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NE𝔼N
9 simp31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NF𝔼N
10 cgrcom NA𝔼NB𝔼NE𝔼NF𝔼NABCgrEFEFCgrAB
11 5 6 7 8 9 10 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCgrEFEFCgrAB
12 simp21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NC𝔼N
13 simp22 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼ND𝔼N
14 simp32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NG𝔼N
15 simp33 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NH𝔼N
16 cgrcom NC𝔼ND𝔼NG𝔼NH𝔼NCDCgrGHGHCgrCD
17 5 12 13 14 15 16 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NCDCgrGHGHCgrCD
18 11 17 anbi12d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCgrEFCDCgrGHEFCgrABGHCgrCD
19 df-3an EFCgrABGHCgrCDEFSegGHEFCgrABGHCgrCDEFSegGH
20 seglecgr12im NE𝔼NF𝔼NG𝔼NH𝔼NA𝔼NB𝔼NC𝔼ND𝔼NEFCgrABGHCgrCDEFSegGHABSegCD
21 5 8 9 14 15 6 7 12 13 20 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NEFCgrABGHCgrCDEFSegGHABSegCD
22 19 21 biimtrrid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NEFCgrABGHCgrCDEFSegGHABSegCD
23 22 expd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NEFCgrABGHCgrCDEFSegGHABSegCD
24 18 23 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCgrEFCDCgrGHEFSegGHABSegCD
25 4 24 impbidd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCgrEFCDCgrGHABSegCDEFSegGH