Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Derive the Axiom of Pairing
sels
Next ⟩
el
Metamath Proof Explorer
Ascii
Unicode
Theorem
sels
Description:
If a class is a set, then it is a member of a set.
(Contributed by
BJ
, 3-Apr-2019)
Ref
Expression
Assertion
sels
⊢
A
∈
V
→
∃
x
A
∈
x
Proof
Step
Hyp
Ref
Expression
1
snidg
⊢
A
∈
V
→
A
∈
A
2
snex
⊢
A
∈
V
3
eleq2
⊢
x
=
A
→
A
∈
x
↔
A
∈
A
4
2
3
spcev
⊢
A
∈
A
→
∃
x
A
∈
x
5
1
4
syl
⊢
A
∈
V
→
∃
x
A
∈
x