Metamath Proof Explorer


Theorem seqid3

Description: A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a .+ -idempotent sums (or " .+ 's") to that element. (Contributed by Mario Carneiro, 15-Dec-2014)

Ref Expression
Hypotheses seqid3.1 φZ+˙Z=Z
seqid3.2 φNM
seqid3.3 φxMNFx=Z
Assertion seqid3 φseqM+˙FN=Z

Proof

Step Hyp Ref Expression
1 seqid3.1 φZ+˙Z=Z
2 seqid3.2 φNM
3 seqid3.3 φxMNFx=Z
4 fvex FxV
5 4 elsn FxZFx=Z
6 3 5 sylibr φxMNFxZ
7 ovex Z+˙ZV
8 7 elsn Z+˙ZZZ+˙Z=Z
9 1 8 sylibr φZ+˙ZZ
10 elsni xZx=Z
11 elsni yZy=Z
12 10 11 oveqan12d xZyZx+˙y=Z+˙Z
13 12 eleq1d xZyZx+˙yZZ+˙ZZ
14 9 13 syl5ibrcom φxZyZx+˙yZ
15 14 imp φxZyZx+˙yZ
16 2 6 15 seqcl φseqM+˙FNZ
17 elsni seqM+˙FNZseqM+˙FN=Z
18 16 17 syl φseqM+˙FN=Z