Metamath Proof Explorer


Theorem serf

Description: An infinite series of complex terms is a function from NN to CC . (Contributed by NM, 18-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses serf.1 Z=M
serf.2 φM
serf.3 φkZFk
Assertion serf φseqM+F:Z

Proof

Step Hyp Ref Expression
1 serf.1 Z=M
2 serf.2 φM
3 serf.3 φkZFk
4 addcl kxk+x
5 4 adantl φkxk+x
6 1 2 3 5 seqf φseqM+F:Z