Metamath Proof Explorer


Theorem serfre

Description: An infinite series of real numbers is a function from NN to RR . (Contributed by NM, 18-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses serf.1 Z=M
serf.2 φM
serfre.3 φkZFk
Assertion serfre φseqM+F:Z

Proof

Step Hyp Ref Expression
1 serf.1 Z=M
2 serf.2 φM
3 serfre.3 φkZFk
4 readdcl kxk+x
5 4 adantl φkxk+x
6 1 2 3 5 seqf φseqM+F:Z