Metamath Proof Explorer


Theorem setcsnterm

Description: The category of one set, either a singleton set or an empty set, is terminal. (Contributed by Zhi Wang, 18-Oct-2025)

Ref Expression
Assertion setcsnterm Could not format assertion : No typesetting found for |- ( SetCat ` { { A } } ) e. TermCat with typecode |-

Proof

Step Hyp Ref Expression
1 eqidd SetCat A = SetCat A
2 snex A V
3 2 a1i A V
4 velsn x A x = A
5 mosn x = A * p p x
6 4 5 sylbi x A * p p x
7 6 rgen x A * p p x
8 7 a1i x A * p p x
9 1 3 8 setcthin SetCat A ThinCat
10 9 mptru SetCat A ThinCat
11 snex A V
12 11 ensn1 A 1 𝑜
13 eqid SetCat A = SetCat A
14 13 3 setcbas A = Base SetCat A
15 14 mptru A = Base SetCat A
16 15 istermc3 Could not format ( ( SetCat ` { { A } } ) e. TermCat <-> ( ( SetCat ` { { A } } ) e. ThinCat /\ { { A } } ~~ 1o ) ) : No typesetting found for |- ( ( SetCat ` { { A } } ) e. TermCat <-> ( ( SetCat ` { { A } } ) e. ThinCat /\ { { A } } ~~ 1o ) ) with typecode |-
17 10 12 16 mpbir2an Could not format ( SetCat ` { { A } } ) e. TermCat : No typesetting found for |- ( SetCat ` { { A } } ) e. TermCat with typecode |-