Metamath Proof Explorer


Theorem setlikespec

Description: If R is set-like in A , then all predecessor classes of elements of A exist. (Contributed by Scott Fenton, 20-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion setlikespec XARSeAPredRAXV

Proof

Step Hyp Ref Expression
1 df-rab xA|xRX=x|xAxRX
2 vex xV
3 2 elpred XAxPredRAXxAxRX
4 3 eqabdv XAPredRAX=x|xAxRX
5 1 4 eqtr4id XAxA|xRX=PredRAX
6 5 adantr XARSeAxA|xRX=PredRAX
7 seex RSeAXAxA|xRXV
8 7 ancoms XARSeAxA|xRXV
9 6 8 eqeltrrd XARSeAPredRAXV