Metamath Proof Explorer


Theorem setsidvald

Description: Value of the structure replacement function, deduction version.

Hint: Do not substitute N by a specific (positive) integer to be independent of a hard-coded index value. Often, ( Endx ) can be used instead of N . (Contributed by AV, 14-Mar-2020) (Revised by AV, 17-Oct-2024)

Ref Expression
Hypotheses setsidvald.e E=SlotN
setsidvald.s φSV
setsidvald.f φFunS
setsidvald.d φNdomS
Assertion setsidvald φS=SsSetNES

Proof

Step Hyp Ref Expression
1 setsidvald.e E=SlotN
2 setsidvald.s φSV
3 setsidvald.f φFunS
4 setsidvald.d φNdomS
5 fvex ESV
6 setsval SVESVSsSetNES=SVNNES
7 2 5 6 sylancl φSsSetNES=SVNNES
8 1 2 strfvnd φES=SN
9 8 opeq2d φNES=NSN
10 9 sneqd φNES=NSN
11 10 uneq2d φSVNNES=SVNNSN
12 funresdfunsn FunSNdomSSVNNSN=S
13 3 4 12 syl2anc φSVNNSN=S
14 7 11 13 3eqtrrd φS=SsSetNES