Metamath Proof Explorer


Theorem sge0fodjrn

Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0fodjrn.k kφ
sge0fodjrn.n nφ
sge0fodjrn.bd k=GB=D
sge0fodjrn.c φCV
sge0fodjrn.f φF:ContoA
sge0fodjrn.dj φDisjnCFn
sge0fodjrn.fng φnCFn=G
sge0fodjrn.b φkAB0+∞
sge0fodjrn.b0 φk=B=0
Assertion sge0fodjrn φsum^kAB=sum^nCD

Proof

Step Hyp Ref Expression
1 sge0fodjrn.k kφ
2 sge0fodjrn.n nφ
3 sge0fodjrn.bd k=GB=D
4 sge0fodjrn.c φCV
5 sge0fodjrn.f φF:ContoA
6 sge0fodjrn.dj φDisjnCFn
7 sge0fodjrn.fng φnCFn=G
8 sge0fodjrn.b φkAB0+∞
9 sge0fodjrn.b0 φk=B=0
10 eqid F-1=F-1
11 1 2 3 4 5 6 7 8 9 10 sge0fodjrnlem φsum^kAB=sum^nCD