Metamath Proof Explorer


Theorem sgrimval

Description: The induced metric on a subgroup in terms of the induced metric on the parent normed group. (Contributed by NM, 1-Feb-2008) (Revised by AV, 19-Oct-2021)

Ref Expression
Hypotheses sgrim.x X=T𝑠U
sgrim.d D=distT
sgrim.e E=distX
sgrimval.t T=GtoNrmGrpN
sgrimval.n N=normG
sgrimval.s S=SubGrpT
Assertion sgrimval GNrmGrpUSAUBUAEB=ADB

Proof

Step Hyp Ref Expression
1 sgrim.x X=T𝑠U
2 sgrim.d D=distT
3 sgrim.e E=distX
4 sgrimval.t T=GtoNrmGrpN
5 sgrimval.n N=normG
6 sgrimval.s S=SubGrpT
7 1 2 3 sgrim USE=D
8 7 oveqd USAEB=ADB
9 8 ad2antlr GNrmGrpUSAUBUAEB=ADB