Metamath Proof Explorer


Theorem sgrp1

Description: The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020)

Ref Expression
Hypothesis sgrp1.m M=BasendxI+ndxIII
Assertion sgrp1 Could not format assertion : No typesetting found for |- ( I e. V -> M e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 sgrp1.m M=BasendxI+ndxIII
2 1 mgm1 IVMMgm
3 df-ov IIIII=IIIII
4 opex IIV
5 fvsng IIVIVIIIII=I
6 4 5 mpan IVIIIII=I
7 3 6 eqtrid IVIIIII=I
8 7 oveq1d IVIIIIIIIII=IIIII
9 7 oveq2d IVIIIIIIIII=IIIII
10 8 9 eqtr4d IVIIIIIIIII=IIIIIIIII
11 oveq1 x=IxIIIy=IIIIy
12 11 oveq1d x=IxIIIyIIIz=IIIIyIIIz
13 oveq1 x=IxIIIyIIIz=IIIIyIIIz
14 12 13 eqeq12d x=IxIIIyIIIz=xIIIyIIIzIIIIyIIIz=IIIIyIIIz
15 14 2ralbidv x=IyIzIxIIIyIIIz=xIIIyIIIzyIzIIIIIyIIIz=IIIIyIIIz
16 15 ralsng IVxIyIzIxIIIyIIIz=xIIIyIIIzyIzIIIIIyIIIz=IIIIyIIIz
17 oveq2 y=IIIIIy=IIIII
18 17 oveq1d y=IIIIIyIIIz=IIIIIIIIz
19 oveq1 y=IyIIIz=IIIIz
20 19 oveq2d y=IIIIIyIIIz=IIIIIIIIz
21 18 20 eqeq12d y=IIIIIyIIIz=IIIIyIIIzIIIIIIIIz=IIIIIIIIz
22 21 ralbidv y=IzIIIIIyIIIz=IIIIyIIIzzIIIIIIIIIz=IIIIIIIIz
23 22 ralsng IVyIzIIIIIyIIIz=IIIIyIIIzzIIIIIIIIIz=IIIIIIIIz
24 oveq2 z=IIIIIIIIIz=IIIIIIIII
25 oveq2 z=IIIIIz=IIIII
26 25 oveq2d z=IIIIIIIIIz=IIIIIIIII
27 24 26 eqeq12d z=IIIIIIIIIz=IIIIIIIIzIIIIIIIII=IIIIIIIII
28 27 ralsng IVzIIIIIIIIIz=IIIIIIIIzIIIIIIIII=IIIIIIIII
29 16 23 28 3bitrd IVxIyIzIxIIIyIIIz=xIIIyIIIzIIIIIIIII=IIIIIIIII
30 10 29 mpbird IVxIyIzIxIIIyIIIz=xIIIyIIIz
31 snex IV
32 1 grpbase IVI=BaseM
33 31 32 ax-mp I=BaseM
34 snex IIIV
35 1 grpplusg IIIVIII=+M
36 34 35 ax-mp III=+M
37 33 36 issgrp Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. { I } A. y e. { I } A. z e. { I } ( ( x { <. <. I , I >. , I >. } y ) { <. <. I , I >. , I >. } z ) = ( x { <. <. I , I >. , I >. } ( y { <. <. I , I >. , I >. } z ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. { I } A. y e. { I } A. z e. { I } ( ( x { <. <. I , I >. , I >. } y ) { <. <. I , I >. , I >. } z ) = ( x { <. <. I , I >. , I >. } ( y { <. <. I , I >. , I >. } z ) ) ) ) with typecode |-
38 2 30 37 sylanbrc Could not format ( I e. V -> M e. Smgrp ) : No typesetting found for |- ( I e. V -> M e. Smgrp ) with typecode |-