Metamath Proof Explorer


Theorem sgrp2nmnd

Description: A small semigroup (with two elements) which is not a monoid. (Contributed by AV, 26-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S = A B
mgm2nsgrp.b Base M = S
sgrp2nmnd.o + M = x S , y S if x = A A B
Assertion sgrp2nmnd S = 2 M Smgrp M Mnd

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S = A B
2 mgm2nsgrp.b Base M = S
3 sgrp2nmnd.o + M = x S , y S if x = A A B
4 1 2 3 sgrp2nmndlem4 S = 2 M Smgrp
5 1 2 3 sgrp2nmndlem5 S = 2 M Mnd
6 4 5 jca S = 2 M Smgrp M Mnd