Metamath Proof Explorer


Theorem sgrpnmndex

Description: There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020)

Ref Expression
Assertion sgrpnmndex Could not format assertion : No typesetting found for |- E. m e. Smgrp m e/ Mnd with typecode |-

Proof

Step Hyp Ref Expression
1 prhash2ex 01=2
2 eqid 01=01
3 prex 01V
4 eqeq1 x=ux=0u=0
5 4 ifbid x=uifx=001=ifu=001
6 eqidd y=vifu=001=ifu=001
7 5 6 cbvmpov x01,y01ifx=001=u01,v01ifu=001
8 7 opeq2i +ndxx01,y01ifx=001=+ndxu01,v01ifu=001
9 8 preq2i Basendx01+ndxx01,y01ifx=001=Basendx01+ndxu01,v01ifu=001
10 9 grpbase 01V01=BaseBasendx01+ndxx01,y01ifx=001
11 3 10 ax-mp 01=BaseBasendx01+ndxx01,y01ifx=001
12 11 eqcomi BaseBasendx01+ndxx01,y01ifx=001=01
13 3 3 mpoex u01,v01ifu=001V
14 9 grpplusg u01,v01ifu=001Vu01,v01ifu=001=+Basendx01+ndxx01,y01ifx=001
15 13 14 ax-mp u01,v01ifu=001=+Basendx01+ndxx01,y01ifx=001
16 15 eqcomi +Basendx01+ndxx01,y01ifx=001=u01,v01ifu=001
17 2 12 16 sgrp2nmndlem4 Could not format ( ( # ` { 0 , 1 } ) = 2 -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } e. Smgrp ) : No typesetting found for |- ( ( # ` { 0 , 1 } ) = 2 -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } e. Smgrp ) with typecode |-
18 neleq1 m=Basendx01+ndxx01,y01ifx=001mMndBasendx01+ndxx01,y01ifx=001Mnd
19 18 adantl 01=2m=Basendx01+ndxx01,y01ifx=001mMndBasendx01+ndxx01,y01ifx=001Mnd
20 2 12 16 sgrp2nmndlem5 01=2Basendx01+ndxx01,y01ifx=001Mnd
21 17 19 20 rspcedvd Could not format ( ( # ` { 0 , 1 } ) = 2 -> E. m e. Smgrp m e/ Mnd ) : No typesetting found for |- ( ( # ` { 0 , 1 } ) = 2 -> E. m e. Smgrp m e/ Mnd ) with typecode |-
22 1 21 ax-mp Could not format E. m e. Smgrp m e/ Mnd : No typesetting found for |- E. m e. Smgrp m e/ Mnd with typecode |-