Metamath Proof Explorer


Theorem shftuz

Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013)

Ref Expression
Assertion shftuz ABx|xAB=B+A

Proof

Step Hyp Ref Expression
1 df-rab x|xAB=x|xxAB
2 simp2 AxxABx
3 zcn AA
4 3 3ad2ant1 AxxABA
5 2 4 npcand AxxABx-A+A=x
6 eluzadd xABAx-A+AB+A
7 6 ancoms AxABx-A+AB+A
8 7 3adant2 AxxABx-A+AB+A
9 5 8 eqeltrrd AxxABxB+A
10 9 3expib AxxABxB+A
11 10 adantr ABxxABxB+A
12 eluzelcn xB+Ax
13 12 a1i ABxB+Ax
14 eluzsub BAxB+AxAB
15 14 3expia BAxB+AxAB
16 15 ancoms ABxB+AxAB
17 13 16 jcad ABxB+AxxAB
18 11 17 impbid ABxxABxB+A
19 18 eqabcdv ABx|xxAB=B+A
20 1 19 eqtrid ABx|xAB=B+A