Metamath Proof Explorer


Theorem shftval5

Description: Value of a shifted sequence. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 FV
Assertion shftval5 ABFshiftAB+A=FB

Proof

Step Hyp Ref Expression
1 shftfval.1 FV
2 simpr BAA
3 addcl BAB+A
4 1 shftval AB+AFshiftAB+A=FB+A-A
5 2 3 4 syl2anc BAFshiftAB+A=FB+A-A
6 pncan BAB+A-A=B
7 6 fveq2d BAFB+A-A=FB
8 5 7 eqtrd BAFshiftAB+A=FB
9 8 ancoms ABFshiftAB+A=FB