Metamath Proof Explorer


Theorem shintcl

Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion shintcl ASAAS

Proof

Step Hyp Ref Expression
1 inteq A=ifASAASA=ifASAAS
2 1 eleq1d A=ifASAASASifASAASS
3 sseq1 A=ifASAASASifASAASS
4 neeq1 A=ifASAASAifASAAS
5 3 4 anbi12d A=ifASAASASAifASAASSifASAAS
6 sseq1 S=ifASAASSSifASAASS
7 neeq1 S=ifASAASSifASAAS
8 6 7 anbi12d S=ifASAASSSSifASAASSifASAAS
9 ssid SS
10 h0elsh 0S
11 10 ne0ii S
12 9 11 pm3.2i SSS
13 5 8 12 elimhyp ifASAASSifASAAS
14 13 shintcli ifASAASS
15 2 14 dedth ASAAS