Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shintcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq | |
|
2 | 1 | eleq1d | |
3 | sseq1 | |
|
4 | neeq1 | |
|
5 | 3 4 | anbi12d | |
6 | sseq1 | |
|
7 | neeq1 | |
|
8 | 6 7 | anbi12d | |
9 | ssid | |
|
10 | h0elsh | |
|
11 | 10 | ne0ii | |
12 | 9 11 | pm3.2i | |
13 | 5 8 12 | elimhyp | |
14 | 13 | shintcli | |
15 | 2 14 | dedth | |