Metamath Proof Explorer


Theorem shscom

Description: Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion shscom ASBSA+B=B+A

Proof

Step Hyp Ref Expression
1 shel ASyAy
2 shel BSzBz
3 1 2 anim12i ASyABSzByz
4 3 an4s ASBSyAzByz
5 ax-hvcom yzy+z=z+y
6 4 5 syl ASBSyAzBy+z=z+y
7 6 eqeq2d ASBSyAzBx=y+zx=z+y
8 7 2rexbidva ASBSyAzBx=y+zyAzBx=z+y
9 rexcom yAzBx=z+yzByAx=z+y
10 8 9 bitrdi ASBSyAzBx=y+zzByAx=z+y
11 shsel ASBSxA+ByAzBx=y+z
12 shsel BSASxB+AzByAx=z+y
13 12 ancoms ASBSxB+AzByAx=z+y
14 10 11 13 3bitr4d ASBSxA+BxB+A
15 14 eqrdv ASBSA+B=B+A