Description: Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shscom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shel | |
|
2 | shel | |
|
3 | 1 2 | anim12i | |
4 | 3 | an4s | |
5 | ax-hvcom | |
|
6 | 4 5 | syl | |
7 | 6 | eqeq2d | |
8 | 7 | 2rexbidva | |
9 | rexcom | |
|
10 | 8 9 | bitrdi | |
11 | shsel | |
|
12 | shsel | |
|
13 | 12 | ancoms | |
14 | 10 11 13 | 3bitr4d | |
15 | 14 | eqrdv | |