Metamath Proof Explorer


Theorem shsupunss

Description: The union of a set of subspaces is smaller than its supremum. (Contributed by NM, 26-Nov-2004) (New usage is discouraged.)

Ref Expression
Assertion shsupunss ASAspanA

Proof

Step Hyp Ref Expression
1 shsspwh S𝒫
2 sstr ASS𝒫A𝒫
3 1 2 mpan2 ASA𝒫
4 3 unissd ASA𝒫
5 unipw 𝒫=
6 4 5 sseqtrdi ASA
7 spanss2 AAspanA
8 6 7 syl ASAspanA