Metamath Proof Explorer


Theorem sigagenid

Description: The sigma-algebra generated by a sigma-algebra is itself. (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Assertion sigagenid SransigAlgebra𝛔S=S

Proof

Step Hyp Ref Expression
1 sgon SransigAlgebraSsigAlgebraS
2 ssid SS
3 sigagenss SsigAlgebraSSS𝛔SS
4 1 2 3 sylancl SransigAlgebra𝛔SS
5 sssigagen SransigAlgebraS𝛔S
6 4 5 eqssd SransigAlgebra𝛔S=S