Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Descartes's rule of signs
Counting sign changes in a word over real numbers
signsvvf
Next ⟩
signsvf0
Metamath Proof Explorer
Ascii
Unicode
Theorem
signsvvf
Description:
V
is a function.
(Contributed by
Thierry Arnoux
, 8-Oct-2018)
Ref
Expression
Hypotheses
signsv.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
signsv.w
⊢
W
=
Base
ndx
−
1
0
1
+
ndx
⨣
˙
signsv.t
⊢
T
=
f
∈
Word
ℝ
⟼
n
∈
0
..^
f
⟼
∑
W
i
=
0
n
sgn
⁡
f
⁡
i
signsv.v
⊢
V
=
f
∈
Word
ℝ
⟼
∑
j
∈
1
..^
f
if
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
1
0
Assertion
signsvvf
⊢
V
:
Word
ℝ
⟶
ℕ
0
Proof
Step
Hyp
Ref
Expression
1
signsv.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
2
signsv.w
⊢
W
=
Base
ndx
−
1
0
1
+
ndx
⨣
˙
3
signsv.t
⊢
T
=
f
∈
Word
ℝ
⟼
n
∈
0
..^
f
⟼
∑
W
i
=
0
n
sgn
⁡
f
⁡
i
4
signsv.v
⊢
V
=
f
∈
Word
ℝ
⟼
∑
j
∈
1
..^
f
if
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
1
0
5
fzofi
⊢
1
..^
f
∈
Fin
6
5
a1i
⊢
f
∈
Word
ℝ
→
1
..^
f
∈
Fin
7
1nn0
⊢
1
∈
ℕ
0
8
7
a1i
⊢
f
∈
Word
ℝ
∧
j
∈
1
..^
f
∧
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
→
1
∈
ℕ
0
9
0nn0
⊢
0
∈
ℕ
0
10
9
a1i
⊢
f
∈
Word
ℝ
∧
j
∈
1
..^
f
∧
¬
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
→
0
∈
ℕ
0
11
8
10
ifclda
⊢
f
∈
Word
ℝ
∧
j
∈
1
..^
f
→
if
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
1
0
∈
ℕ
0
12
6
11
fsumnn0cl
⊢
f
∈
Word
ℝ
→
∑
j
∈
1
..^
f
if
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
1
0
∈
ℕ
0
13
4
12
fmpti
⊢
V
:
Word
ℝ
⟶
ℕ
0