Metamath Proof Explorer


Theorem signsvvf

Description: V is a function. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsv.w W = Base ndx 1 0 1 + ndx ˙
signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
Assertion signsvvf V : Word 0

Proof

Step Hyp Ref Expression
1 signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsv.w W = Base ndx 1 0 1 + ndx ˙
3 signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
4 signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
5 fzofi 1 ..^ f Fin
6 5 a1i f Word 1 ..^ f Fin
7 1nn0 1 0
8 7 a1i f Word j 1 ..^ f T f j T f j 1 1 0
9 0nn0 0 0
10 9 a1i f Word j 1 ..^ f ¬ T f j T f j 1 0 0
11 8 10 ifclda f Word j 1 ..^ f if T f j T f j 1 1 0 0
12 6 11 fsumnn0cl f Word j 1 ..^ f if T f j T f j 1 1 0 0
13 4 12 fmpti V : Word 0