Metamath Proof Explorer


Theorem simpgntrivd

Description: Simple groups are nontrivial. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses simpgntrivd.1 B = Base G
simpgntrivd.2 0 ˙ = 0 G
simpgntrivd.3 φ G SimpGrp
Assertion simpgntrivd φ ¬ B = 0 ˙

Proof

Step Hyp Ref Expression
1 simpgntrivd.1 B = Base G
2 simpgntrivd.2 0 ˙ = 0 G
3 simpgntrivd.3 φ G SimpGrp
4 3 adantr φ B = 0 ˙ G SimpGrp
5 3 simpggrpd φ G Grp
6 5 adantr φ B = 0 ˙ G Grp
7 simpr φ B = 0 ˙ B = 0 ˙
8 1 2 6 7 trivnsimpgd φ B = 0 ˙ ¬ G SimpGrp
9 4 8 pm2.65da φ ¬ B = 0 ˙