Metamath Proof Explorer


Theorem simprbda

Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007)

Ref Expression
Hypothesis pm3.26bda.1 φ ψ χ θ
Assertion simprbda φ ψ χ

Proof

Step Hyp Ref Expression
1 pm3.26bda.1 φ ψ χ θ
2 1 biimpa φ ψ χ θ
3 2 simpld φ ψ χ