Metamath Proof Explorer


Theorem sinbnd

Description: The sine of a real number lies between -1 and 1. Equation 18 of Gleason p. 311. (Contributed by NM, 16-Jan-2006)

Ref Expression
Assertion sinbnd A1sinAsinA1

Proof

Step Hyp Ref Expression
1 recoscl AcosA
2 1 sqge0d A0cosA2
3 resincl AsinA
4 3 resqcld AsinA2
5 1 resqcld AcosA2
6 4 5 addge01d A0cosA2sinA2sinA2+cosA2
7 2 6 mpbid AsinA2sinA2+cosA2
8 recn AA
9 sincossq AsinA2+cosA2=1
10 8 9 syl AsinA2+cosA2=1
11 sq1 12=1
12 10 11 eqtr4di AsinA2+cosA2=12
13 7 12 breqtrd AsinA212
14 1re 1
15 0le1 01
16 lenegsq sinA101sinA1sinA1sinA212
17 14 15 16 mp3an23 sinAsinA1sinA1sinA212
18 lenegcon1 sinA1sinA11sinA
19 14 18 mpan2 sinAsinA11sinA
20 19 anbi2d sinAsinA1sinA1sinA11sinA
21 17 20 bitr3d sinAsinA212sinA11sinA
22 3 21 syl AsinA212sinA11sinA
23 13 22 mpbid AsinA11sinA
24 23 ancomd A1sinAsinA1