Metamath Proof Explorer


Theorem sinh-conventional

Description: Conventional definition of sinh. Here we show that the sinh definition we're using has the same meaning as the conventional definition used in some other sources. We choose a slightly different definition of sinh because it has fewer operations, and thus is more convenient to manipulate using set.mm. (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion sinh-conventional A sinh A = i sin i A

Proof

Step Hyp Ref Expression
1 sinhval-named A sinh A = sin i A i
2 ax-icn i
3 mulcl i A i A
4 2 3 mpan A i A
5 4 sincld A sin i A
6 ine0 i 0
7 divrec2 sin i A i i 0 sin i A i = 1 i sin i A
8 2 6 7 mp3an23 sin i A sin i A i = 1 i sin i A
9 5 8 syl A sin i A i = 1 i sin i A
10 irec 1 i = i
11 10 oveq1i 1 i sin i A = i sin i A
12 11 a1i A 1 i sin i A = i sin i A
13 1 9 12 3eqtrd A sinh A = i sin i A