Metamath Proof Explorer


Theorem slmdsn0

Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018) (Proof shortened by AV, 10-Jan-2023)

Ref Expression
Hypotheses slmdsn0.f F = Scalar W
slmdsn0.b B = Base F
Assertion slmdsn0 W SLMod B

Proof

Step Hyp Ref Expression
1 slmdsn0.f F = Scalar W
2 slmdsn0.b B = Base F
3 1 slmdsrg W SLMod F SRing
4 srgmnd F SRing F Mnd
5 2 mndbn0 F Mnd B
6 3 4 5 3syl W SLMod B