Metamath Proof Explorer


Theorem slotsdifipndx

Description: The slot for the scalar is not the index of other slots. Formerly part of proof for srasca and sravsca . (Contributed by AV, 12-Nov-2024)

Ref Expression
Assertion slotsdifipndx ndx𝑖ndxScalarndx𝑖ndx

Proof

Step Hyp Ref Expression
1 6re 6
2 6lt8 6<8
3 1 2 ltneii 68
4 vscandx ndx=6
5 ipndx 𝑖ndx=8
6 4 5 neeq12i ndx𝑖ndx68
7 3 6 mpbir ndx𝑖ndx
8 5re 5
9 5lt8 5<8
10 8 9 ltneii 58
11 scandx Scalarndx=5
12 11 5 neeq12i Scalarndx𝑖ndx58
13 10 12 mpbir Scalarndx𝑖ndx
14 7 13 pm3.2i ndx𝑖ndxScalarndx𝑖ndx