Metamath Proof Explorer


Theorem slotsdifipndx

Description: The slot for the scalar is not the index of other slots. Formerly part of proof for srasca and sravsca . (Contributed by AV, 12-Nov-2024)

Ref Expression
Assertion slotsdifipndx ndx 𝑖 ndx Scalar ndx 𝑖 ndx

Proof

Step Hyp Ref Expression
1 6re 6
2 6lt8 6 < 8
3 1 2 ltneii 6 8
4 vscandx ndx = 6
5 ipndx 𝑖 ndx = 8
6 4 5 neeq12i ndx 𝑖 ndx 6 8
7 3 6 mpbir ndx 𝑖 ndx
8 5re 5
9 5lt8 5 < 8
10 8 9 ltneii 5 8
11 scandx Scalar ndx = 5
12 11 5 neeq12i Scalar ndx 𝑖 ndx 5 8
13 10 12 mpbir Scalar ndx 𝑖 ndx
14 7 13 pm3.2i ndx 𝑖 ndx Scalar ndx 𝑖 ndx