Metamath Proof Explorer


Theorem slotsdifplendx

Description: The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfun . (Contributed by AV, 11-Nov-2024)

Ref Expression
Assertion slotsdifplendx * ndx ndx TopSet ndx ndx

Proof

Step Hyp Ref Expression
1 4re 4
2 4lt10 4 < 10
3 1 2 ltneii 4 10
4 starvndx * ndx = 4
5 plendx ndx = 10
6 4 5 neeq12i * ndx ndx 4 10
7 3 6 mpbir * ndx ndx
8 9re 9
9 9lt10 9 < 10
10 8 9 ltneii 9 10
11 tsetndx TopSet ndx = 9
12 11 5 neeq12i TopSet ndx ndx 9 10
13 10 12 mpbir TopSet ndx ndx
14 7 13 pm3.2i * ndx ndx TopSet ndx ndx