Metamath Proof Explorer


Theorem slotslnbpsd

Description: The slots Base , +g , .s and dist are different from the slot LineG . Formerly part of ttglem and proofs using it. (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion slotslnbpsd Line 𝒢 ndx Base ndx Line 𝒢 ndx + ndx Line 𝒢 ndx ndx Line 𝒢 ndx dist ndx

Proof

Step Hyp Ref Expression
1 lngndx Line 𝒢 ndx = 17
2 1re 1
3 1nn 1
4 7nn0 7 0
5 1nn0 1 0
6 1lt10 1 < 10
7 3 4 5 6 declti 1 < 17
8 2 7 gtneii 17 1
9 basendx Base ndx = 1
10 8 9 neeqtrri 17 Base ndx
11 1 10 eqnetri Line 𝒢 ndx Base ndx
12 2re 2
13 2nn0 2 0
14 2lt10 2 < 10
15 3 4 13 14 declti 2 < 17
16 12 15 gtneii 17 2
17 plusgndx + ndx = 2
18 16 17 neeqtrri 17 + ndx
19 1 18 eqnetri Line 𝒢 ndx + ndx
20 11 19 pm3.2i Line 𝒢 ndx Base ndx Line 𝒢 ndx + ndx
21 6re 6
22 6nn0 6 0
23 6lt10 6 < 10
24 3 4 22 23 declti 6 < 17
25 21 24 gtneii 17 6
26 vscandx ndx = 6
27 25 26 neeqtrri 17 ndx
28 1 27 eqnetri Line 𝒢 ndx ndx
29 2nn 2
30 5 29 decnncl 12
31 30 nnrei 12
32 7nn 7
33 2lt7 2 < 7
34 5 13 32 33 declt 12 < 17
35 31 34 gtneii 17 12
36 dsndx dist ndx = 12
37 35 36 neeqtrri 17 dist ndx
38 1 37 eqnetri Line 𝒢 ndx dist ndx
39 28 38 pm3.2i Line 𝒢 ndx ndx Line 𝒢 ndx dist ndx
40 20 39 pm3.2i Line 𝒢 ndx Base ndx Line 𝒢 ndx + ndx Line 𝒢 ndx ndx Line 𝒢 ndx dist ndx