Metamath Proof Explorer


Theorem slotslnbpsd

Description: The slots Base , +g , .s and dist are different from the slot LineG . Formerly part of ttglem and proofs using it. (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion slotslnbpsd Line𝒢ndxBasendxLine𝒢ndx+ndxLine𝒢ndxndxLine𝒢ndxdistndx

Proof

Step Hyp Ref Expression
1 lngndx Line𝒢ndx=17
2 1re 1
3 1nn 1
4 7nn0 70
5 1nn0 10
6 1lt10 1<10
7 3 4 5 6 declti 1<17
8 2 7 gtneii 171
9 basendx Basendx=1
10 8 9 neeqtrri 17Basendx
11 1 10 eqnetri Line𝒢ndxBasendx
12 2re 2
13 2nn0 20
14 2lt10 2<10
15 3 4 13 14 declti 2<17
16 12 15 gtneii 172
17 plusgndx +ndx=2
18 16 17 neeqtrri 17+ndx
19 1 18 eqnetri Line𝒢ndx+ndx
20 11 19 pm3.2i Line𝒢ndxBasendxLine𝒢ndx+ndx
21 6re 6
22 6nn0 60
23 6lt10 6<10
24 3 4 22 23 declti 6<17
25 21 24 gtneii 176
26 vscandx ndx=6
27 25 26 neeqtrri 17ndx
28 1 27 eqnetri Line𝒢ndxndx
29 2nn 2
30 5 29 decnncl 12
31 30 nnrei 12
32 7nn 7
33 2lt7 2<7
34 5 13 32 33 declt 12<17
35 31 34 gtneii 1712
36 dsndx distndx=12
37 35 36 neeqtrri 17distndx
38 1 37 eqnetri Line𝒢ndxdistndx
39 28 38 pm3.2i Line𝒢ndxndxLine𝒢ndxdistndx
40 20 39 pm3.2i Line𝒢ndxBasendxLine𝒢ndx+ndxLine𝒢ndxndxLine𝒢ndxdistndx