Metamath Proof Explorer


Theorem sltletrd

Description: Surreal less than is transitive. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Hypotheses slttrd.1 φ A No
slttrd.2 φ B No
slttrd.3 φ C No
sltletrd.4 φ A < s B
sltletrd.5 φ B s C
Assertion sltletrd φ A < s C

Proof

Step Hyp Ref Expression
1 slttrd.1 φ A No
2 slttrd.2 φ B No
3 slttrd.3 φ C No
4 sltletrd.4 φ A < s B
5 sltletrd.5 φ B s C
6 sltletr A No B No C No A < s B B s C A < s C
7 1 2 3 6 syl3anc φ A < s B B s C A < s C
8 4 5 7 mp2and φ A < s C