Metamath Proof Explorer


Theorem sltrecd

Description: A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 5-Dec-2025)

Ref Expression
Hypotheses sltrecd.1 φ A s B
sltrecd.2 φ C s D
sltrecd.3 φ X = A | s B
sltrecd.4 φ Y = C | s D
Assertion sltrecd φ X < s Y c C X s c b B b s Y

Proof

Step Hyp Ref Expression
1 sltrecd.1 φ A s B
2 sltrecd.2 φ C s D
3 sltrecd.3 φ X = A | s B
4 sltrecd.4 φ Y = C | s D
5 sltrec A s B C s D X = A | s B Y = C | s D X < s Y c C X s c b B b s Y
6 1 2 3 4 5 syl22anc φ X < s Y c C X s c b B b s Y