Metamath Proof Explorer


Theorem smadiadetlem3lem0

Description: Lemma 0 for smadiadetlem3 . (Contributed by AV, 12-Jan-2019)

Ref Expression
Hypotheses marep01ma.a A = N Mat R
marep01ma.b B = Base A
marep01ma.r R CRing
marep01ma.0 0 ˙ = 0 R
marep01ma.1 1 ˙ = 1 R
smadiadetlem.p P = Base SymGrp N
smadiadetlem.g G = mulGrp R
madetminlem.y Y = ℤRHom R
madetminlem.s S = pmSgn N
madetminlem.t · ˙ = R
smadiadetlem.w W = Base SymGrp N K
smadiadetlem.z Z = pmSgn N K
Assertion smadiadetlem3lem0 M B K N Q W Y Z Q R G n N K n i N K , j N K i M j Q n Base R

Proof

Step Hyp Ref Expression
1 marep01ma.a A = N Mat R
2 marep01ma.b B = Base A
3 marep01ma.r R CRing
4 marep01ma.0 0 ˙ = 0 R
5 marep01ma.1 1 ˙ = 1 R
6 smadiadetlem.p P = Base SymGrp N
7 smadiadetlem.g G = mulGrp R
8 madetminlem.y Y = ℤRHom R
9 madetminlem.s S = pmSgn N
10 madetminlem.t · ˙ = R
11 smadiadetlem.w W = Base SymGrp N K
12 smadiadetlem.z Z = pmSgn N K
13 difssd K N N K N
14 13 anim2i M B K N M B N K N
15 14 adantr M B K N Q W M B N K N
16 1 2 submabas M B N K N i N K , j N K i M j Base N K Mat R
17 15 16 syl M B K N Q W i N K , j N K i M j Base N K Mat R
18 simpr M B K N Q W Q W
19 eqid N K Mat R = N K Mat R
20 eqid Base N K Mat R = Base N K Mat R
21 11 12 8 19 20 7 madetsmelbas2 R CRing i N K , j N K i M j Base N K Mat R Q W Y Z Q R G n N K n i N K , j N K i M j Q n Base R
22 3 17 18 21 mp3an2i M B K N Q W Y Z Q R G n N K n i N K , j N K i M j Q n Base R