Metamath Proof Explorer


Theorem smoeq

Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011)

Ref Expression
Assertion smoeq A=BSmoASmoB

Proof

Step Hyp Ref Expression
1 id A=BA=B
2 dmeq A=BdomA=domB
3 1 2 feq12d A=BA:domAOnB:domBOn
4 ordeq domA=domBOrddomAOrddomB
5 2 4 syl A=BOrddomAOrddomB
6 fveq1 A=BAx=Bx
7 fveq1 A=BAy=By
8 6 7 eleq12d A=BAxAyBxBy
9 8 imbi2d A=BxyAxAyxyBxBy
10 9 2ralbidv A=BxdomAydomAxyAxAyxdomAydomAxyBxBy
11 2 raleqdv A=BydomAxyBxByydomBxyBxBy
12 11 ralbidv A=BxdomAydomAxyBxByxdomAydomBxyBxBy
13 2 raleqdv A=BxdomAydomBxyBxByxdomBydomBxyBxBy
14 10 12 13 3bitrd A=BxdomAydomAxyAxAyxdomBydomBxyBxBy
15 3 5 14 3anbi123d A=BA:domAOnOrddomAxdomAydomAxyAxAyB:domBOnOrddomBxdomBydomBxyBxBy
16 df-smo SmoAA:domAOnOrddomAxdomAydomAxyAxAy
17 df-smo SmoBB:domBOnOrddomBxdomBydomBxyBxBy
18 15 16 17 3bitr4g A=BSmoASmoB