Metamath Proof Explorer


Theorem smores3

Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion smores3 SmoABCdomABOrdBSmoAC

Proof

Step Hyp Ref Expression
1 dmres domAB=BdomA
2 incom BdomA=domAB
3 1 2 eqtri domAB=domAB
4 3 eleq2i CdomABCdomAB
5 smores SmoABCdomABSmoABC
6 4 5 sylan2br SmoABCdomABSmoABC
7 6 3adant3 SmoABCdomABOrdBSmoABC
8 elinel2 CdomABCB
9 ordelss OrdBCBCB
10 9 ancoms CBOrdBCB
11 8 10 sylan CdomABOrdBCB
12 11 3adant1 SmoABCdomABOrdBCB
13 resabs1 CBABC=AC
14 smoeq ABC=ACSmoABCSmoAC
15 12 13 14 3syl SmoABCdomABOrdBSmoABCSmoAC
16 7 15 mpbid SmoABCdomABOrdBSmoAC