Metamath Proof Explorer


Theorem sn-axprlem3

Description: axprlem3 using only Tarski's FOL axiom schemes and ax-rep . (Contributed by SN, 22-Sep-2023)

Ref Expression
Assertion sn-axprlem3 yzzywxif-φz=az=b

Proof

Step Hyp Ref Expression
1 axrep6 w*zif-φz=az=byzzywxif-φz=az=b
2 ax6evr ya=y
3 ifptru φif-φz=az=bz=a
4 3 biimpd φif-φz=az=bz=a
5 equtrr a=yz=az=y
6 4 5 sylan9r a=yφif-φz=az=bz=y
7 6 alrimiv a=yφzif-φz=az=bz=y
8 7 expcom φa=yzif-φz=az=bz=y
9 8 eximdv φya=yyzif-φz=az=bz=y
10 2 9 mpi φyzif-φz=az=bz=y
11 ax6evr yb=y
12 ifpfal ¬φif-φz=az=bz=b
13 12 biimpd ¬φif-φz=az=bz=b
14 equtrr b=yz=bz=y
15 13 14 sylan9r b=y¬φif-φz=az=bz=y
16 15 alrimiv b=y¬φzif-φz=az=bz=y
17 16 expcom ¬φb=yzif-φz=az=bz=y
18 17 eximdv ¬φyb=yyzif-φz=az=bz=y
19 11 18 mpi ¬φyzif-φz=az=bz=y
20 10 19 pm2.61i yzif-φz=az=bz=y
21 df-mo *zif-φz=az=byzif-φz=az=bz=y
22 20 21 mpbir *zif-φz=az=b
23 1 22 mpg yzzywxif-φz=az=b