Metamath Proof Explorer


Theorem sn-negex2

Description: Proof of cnegex2 without ax-mulcom . (Contributed by SN, 5-May-2024)

Ref Expression
Assertion sn-negex2 Abb+A=0

Proof

Step Hyp Ref Expression
1 sn-negex12 AbA+b=0b+A=0
2 simpr A+b=0b+A=0b+A=0
3 2 reximi bA+b=0b+A=0bb+A=0
4 1 3 syl Abb+A=0