Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
sn-subf
Next ⟩
resubeqsub
Metamath Proof Explorer
Ascii
Unicode
Theorem
sn-subf
Description:
subf
without
ax-mulcom
.
(Contributed by
SN
, 5-May-2024)
Ref
Expression
Assertion
sn-subf
⊢
−
:
ℂ
×
ℂ
⟶
ℂ
Proof
Step
Hyp
Ref
Expression
1
subval
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
−
y
=
ι
z
∈
ℂ
|
y
+
z
=
x
2
sn-subcl
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
−
y
∈
ℂ
3
1
2
eqeltrrd
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
ι
z
∈
ℂ
|
y
+
z
=
x
∈
ℂ
4
3
rgen2
⊢
∀
x
∈
ℂ
∀
y
∈
ℂ
ι
z
∈
ℂ
|
y
+
z
=
x
∈
ℂ
5
df-sub
⊢
−
=
x
∈
ℂ
,
y
∈
ℂ
⟼
ι
z
∈
ℂ
|
y
+
z
=
x
6
5
fmpo
⊢
∀
x
∈
ℂ
∀
y
∈
ℂ
ι
z
∈
ℂ
|
y
+
z
=
x
∈
ℂ
↔
−
:
ℂ
×
ℂ
⟶
ℂ
7
4
6
mpbi
⊢
−
:
ℂ
×
ℂ
⟶
ℂ