Metamath Proof Explorer


Theorem sn-subf

Description: subf without ax-mulcom . (Contributed by SN, 5-May-2024)

Ref Expression
Assertion sn-subf : ×

Proof

Step Hyp Ref Expression
1 subval x y x y = ι z | y + z = x
2 sn-subcl x y x y
3 1 2 eqeltrrd x y ι z | y + z = x
4 3 rgen2 x y ι z | y + z = x
5 df-sub = x , y ι z | y + z = x
6 5 fmpo x y ι z | y + z = x : ×
7 4 6 mpbi : ×