Metamath Proof Explorer


Theorem sndisj

Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion sndisj DisjxAx

Proof

Step Hyp Ref Expression
1 dfdisj2 DisjxAxy*xxAyx
2 moeq *xx=y
3 simpr xAyxyx
4 velsn yxy=x
5 3 4 sylib xAyxy=x
6 5 equcomd xAyxx=y
7 6 moimi *xx=y*xxAyx
8 2 7 ax-mp *xxAyx
9 1 8 mpgbir DisjxAx