Description: A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | snelsingles.1 | |
|
Assertion | snelsingles | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelsingles.1 | |
|
2 | isset | |
|
3 | eqcom | |
|
4 | 3 | exbii | |
5 | 2 4 | bitri | |
6 | 1 5 | mpbi | |
7 | sneq | |
|
8 | 6 7 | eximii | |
9 | elsingles | |
|
10 | 8 9 | mpbir | |