Metamath Proof Explorer


Theorem snelsingles

Description: A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013)

Ref Expression
Hypothesis snelsingles.1 AV
Assertion snelsingles A𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌

Proof

Step Hyp Ref Expression
1 snelsingles.1 AV
2 isset AVxx=A
3 eqcom x=AA=x
4 3 exbii xx=AxA=x
5 2 4 bitri AVxA=x
6 1 5 mpbi xA=x
7 sneq A=xA=x
8 6 7 eximii xA=x
9 elsingles A𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌xA=x
10 8 9 mpbir A𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌