Metamath Proof Explorer


Theorem snnen2oOLD

Description: Obsolete version of snnen2o as of 18-Nov-2024. (Contributed by AV, 6-Aug-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snnen2oOLD ¬A2𝑜

Proof

Step Hyp Ref Expression
1 1onn 1𝑜ω
2 php5 1𝑜ω¬1𝑜suc1𝑜
3 1 2 ax-mp ¬1𝑜suc1𝑜
4 ensn1g AVA1𝑜
5 df-2o 2𝑜=suc1𝑜
6 5 eqcomi suc1𝑜=2𝑜
7 6 breq2i 1𝑜suc1𝑜1𝑜2𝑜
8 ensymb A1𝑜1𝑜A
9 entr 1𝑜AA2𝑜1𝑜2𝑜
10 9 ex 1𝑜AA2𝑜1𝑜2𝑜
11 8 10 sylbi A1𝑜A2𝑜1𝑜2𝑜
12 11 con3rr3 ¬1𝑜2𝑜A1𝑜¬A2𝑜
13 7 12 sylnbi ¬1𝑜suc1𝑜A1𝑜¬A2𝑜
14 3 4 13 mpsyl AV¬A2𝑜
15 2on0 2𝑜
16 ensymb 2𝑜2𝑜
17 en0 2𝑜2𝑜=
18 16 17 bitri 2𝑜2𝑜=
19 15 18 nemtbir ¬2𝑜
20 snprc ¬AVA=
21 20 biimpi ¬AVA=
22 21 breq1d ¬AVA2𝑜2𝑜
23 19 22 mtbiri ¬AV¬A2𝑜
24 14 23 pm2.61i ¬A2𝑜