| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1onn |  |-  1o e. _om | 
						
							| 2 |  | php5 |  |-  ( 1o e. _om -> -. 1o ~~ suc 1o ) | 
						
							| 3 | 1 2 | ax-mp |  |-  -. 1o ~~ suc 1o | 
						
							| 4 |  | ensn1g |  |-  ( A e. _V -> { A } ~~ 1o ) | 
						
							| 5 |  | df-2o |  |-  2o = suc 1o | 
						
							| 6 | 5 | eqcomi |  |-  suc 1o = 2o | 
						
							| 7 | 6 | breq2i |  |-  ( 1o ~~ suc 1o <-> 1o ~~ 2o ) | 
						
							| 8 |  | ensymb |  |-  ( { A } ~~ 1o <-> 1o ~~ { A } ) | 
						
							| 9 |  | entr |  |-  ( ( 1o ~~ { A } /\ { A } ~~ 2o ) -> 1o ~~ 2o ) | 
						
							| 10 | 9 | ex |  |-  ( 1o ~~ { A } -> ( { A } ~~ 2o -> 1o ~~ 2o ) ) | 
						
							| 11 | 8 10 | sylbi |  |-  ( { A } ~~ 1o -> ( { A } ~~ 2o -> 1o ~~ 2o ) ) | 
						
							| 12 | 11 | con3rr3 |  |-  ( -. 1o ~~ 2o -> ( { A } ~~ 1o -> -. { A } ~~ 2o ) ) | 
						
							| 13 | 7 12 | sylnbi |  |-  ( -. 1o ~~ suc 1o -> ( { A } ~~ 1o -> -. { A } ~~ 2o ) ) | 
						
							| 14 | 3 4 13 | mpsyl |  |-  ( A e. _V -> -. { A } ~~ 2o ) | 
						
							| 15 |  | 2on0 |  |-  2o =/= (/) | 
						
							| 16 |  | ensymb |  |-  ( (/) ~~ 2o <-> 2o ~~ (/) ) | 
						
							| 17 |  | en0 |  |-  ( 2o ~~ (/) <-> 2o = (/) ) | 
						
							| 18 | 16 17 | bitri |  |-  ( (/) ~~ 2o <-> 2o = (/) ) | 
						
							| 19 | 15 18 | nemtbir |  |-  -. (/) ~~ 2o | 
						
							| 20 |  | snprc |  |-  ( -. A e. _V <-> { A } = (/) ) | 
						
							| 21 | 20 | biimpi |  |-  ( -. A e. _V -> { A } = (/) ) | 
						
							| 22 | 21 | breq1d |  |-  ( -. A e. _V -> ( { A } ~~ 2o <-> (/) ~~ 2o ) ) | 
						
							| 23 | 19 22 | mtbiri |  |-  ( -. A e. _V -> -. { A } ~~ 2o ) | 
						
							| 24 | 14 23 | pm2.61i |  |-  -. { A } ~~ 2o |