Metamath Proof Explorer


Theorem span0

Description: The span of the empty set is the zero subspace. Remark 11.6.e of Schechter p. 276. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion span0 span=0

Proof

Step Hyp Ref Expression
1 h0elsh 0S
2 1 shssii 0
3 0ss 0
4 spanss 00spanspan0
5 2 3 4 mp2an spanspan0
6 spanid 0Sspan0=0
7 1 6 ax-mp span0=0
8 5 7 sseqtri span0
9 0ss
10 spancl spanS
11 9 10 ax-mp spanS
12 sh0le spanS0span
13 11 12 ax-mp 0span
14 8 13 eqssi span=0