Metamath Proof Explorer


Theorem span0

Description: The span of the empty set is the zero subspace. Remark 11.6.e of Schechter p. 276. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion span0 span = 0

Proof

Step Hyp Ref Expression
1 h0elsh 0 S
2 1 shssii 0
3 0ss 0
4 spanss 0 0 span span 0
5 2 3 4 mp2an span span 0
6 spanid 0 S span 0 = 0
7 1 6 ax-mp span 0 = 0
8 5 7 sseqtri span 0
9 0ss
10 spancl span S
11 9 10 ax-mp span S
12 sh0le span S 0 span
13 11 12 ax-mp 0 span
14 8 13 eqssi span = 0