Metamath Proof Explorer


Theorem spesbcdi

Description: A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses spesbcdi.1 φψ
spesbcdi.2 [˙A/x]˙χψ
Assertion spesbcdi φxχ

Proof

Step Hyp Ref Expression
1 spesbcdi.1 φψ
2 spesbcdi.2 [˙A/x]˙χψ
3 1 2 sylibr φ[˙A/x]˙χ
4 3 spesbcd φxχ