Metamath Proof Explorer


Theorem spesbcdi

Description: A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses spesbcdi.1 φ ψ
spesbcdi.2 [˙A / x]˙ χ ψ
Assertion spesbcdi φ x χ

Proof

Step Hyp Ref Expression
1 spesbcdi.1 φ ψ
2 spesbcdi.2 [˙A / x]˙ χ ψ
3 1 2 sylibr φ [˙A / x]˙ χ
4 3 spesbcd φ x χ