Metamath Proof Explorer


Theorem sprel

Description: An element of the set of all unordered pairs over a given set V is a pair of elements of the set V . (Contributed by AV, 22-Nov-2021)

Ref Expression
Assertion sprel XPairsVaVbVX=ab

Proof

Step Hyp Ref Expression
1 elfvex XPairsVVV
2 sprvalpw VVPairsV=p𝒫V|aVbVp=ab
3 2 eleq2d VVXPairsVXp𝒫V|aVbVp=ab
4 eqeq1 p=Xp=abX=ab
5 4 2rexbidv p=XaVbVp=abaVbVX=ab
6 5 elrab Xp𝒫V|aVbVp=abX𝒫VaVbVX=ab
7 6 simprbi Xp𝒫V|aVbVp=abaVbVX=ab
8 3 7 syl6bi VVXPairsVaVbVX=ab
9 1 8 mpcom XPairsVaVbVX=ab