Metamath Proof Explorer


Theorem sprvalpwle2

Description: The set of all unordered pairs over a given set V , expressed by a restricted class abstraction. (Contributed by AV, 24-Nov-2021)

Ref Expression
Assertion sprvalpwle2 V W Pairs V = p 𝒫 V | p 2

Proof

Step Hyp Ref Expression
1 sprvalpwn0 V W Pairs V = p 𝒫 V | a V b V p = a b
2 hashle2prv p 𝒫 V p 2 a V b V p = a b
3 2 adantl V W p 𝒫 V p 2 a V b V p = a b
4 3 bicomd V W p 𝒫 V a V b V p = a b p 2
5 4 rabbidva V W p 𝒫 V | a V b V p = a b = p 𝒫 V | p 2
6 1 5 eqtrd V W Pairs V = p 𝒫 V | p 2