Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Properties of real and complex numbers
sqdivzi
Next ⟩
supfz
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqdivzi
Description:
Distribution of square over division.
(Contributed by
Scott Fenton
, 7-Jun-2013)
Ref
Expression
Hypotheses
sqdivzi.1
⊢
A
∈
ℂ
sqdivzi.2
⊢
B
∈
ℂ
Assertion
sqdivzi
⊢
B
≠
0
→
A
B
2
=
A
2
B
2
Proof
Step
Hyp
Ref
Expression
1
sqdivzi.1
⊢
A
∈
ℂ
2
sqdivzi.2
⊢
B
∈
ℂ
3
oveq2
⊢
B
=
if
B
≠
0
B
1
→
A
B
=
A
if
B
≠
0
B
1
4
3
oveq1d
⊢
B
=
if
B
≠
0
B
1
→
A
B
2
=
A
if
B
≠
0
B
1
2
5
oveq1
⊢
B
=
if
B
≠
0
B
1
→
B
2
=
if
B
≠
0
B
1
2
6
5
oveq2d
⊢
B
=
if
B
≠
0
B
1
→
A
2
B
2
=
A
2
if
B
≠
0
B
1
2
7
4
6
eqeq12d
⊢
B
=
if
B
≠
0
B
1
→
A
B
2
=
A
2
B
2
↔
A
if
B
≠
0
B
1
2
=
A
2
if
B
≠
0
B
1
2
8
ax-1cn
⊢
1
∈
ℂ
9
2
8
ifcli
⊢
if
B
≠
0
B
1
∈
ℂ
10
elimne0
⊢
if
B
≠
0
B
1
≠
0
11
1
9
10
sqdivi
⊢
A
if
B
≠
0
B
1
2
=
A
2
if
B
≠
0
B
1
2
12
7
11
dedth
⊢
B
≠
0
→
A
B
2
=
A
2
B
2