Metamath Proof Explorer


Theorem sqrtsq2

Description: Relationship between square root and squares. (Contributed by NM, 31-Jul-1999) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion sqrtsq2 A0AB0BA=BA=B2

Proof

Step Hyp Ref Expression
1 resqrtcl A0AA
2 sqrtge0 A0A0A
3 1 2 jca A0AA0A
4 sq11 A0AB0BA2=B2A=B
5 3 4 sylan A0AB0BA2=B2A=B
6 resqrtth A0AA2=A
7 6 adantr A0AB0BA2=A
8 7 eqeq1d A0AB0BA2=B2A=B2
9 5 8 bitr3d A0AB0BA=BA=B2