Metamath Proof Explorer


Theorem srafldlvec

Description: Given a subfield F of a field E , E may be considered as a vector space over F , which becomes the field of scalars. (Contributed by Thierry Arnoux, 24-May-2023)

Ref Expression
Hypotheses sralvec.a A = subringAlg E U
sralvec.f F = E 𝑠 U
Assertion srafldlvec E Field F Field U SubRing E A LVec

Proof

Step Hyp Ref Expression
1 sralvec.a A = subringAlg E U
2 sralvec.f F = E 𝑠 U
3 isfld E Field E DivRing E CRing
4 3 simplbi E Field E DivRing
5 isfld F Field F DivRing F CRing
6 5 simplbi F Field F DivRing
7 id U SubRing E U SubRing E
8 1 2 sralvec E DivRing F DivRing U SubRing E A LVec
9 4 6 7 8 syl3an E Field F Field U SubRing E A LVec